
Journal of Geochemical Exploration 139 (2014) 207–216

Contents lists available at ScienceDirect

Journal of Geochemical Exploration

j ourna l homepage: www.e lsev ie r .com/ locate / jgeoexp
Estimating the average concentration of minor and trace elements in
surficial sediments using fractal methods
Tuhua Ma a, Changjiang Li a,⁎, Zhiming Lu b

a Zhejiang Information Center of Land and Resources, 310007 Hangzhou, China
b Computational Earth Science Group (EES-16), Los Alamos National Laboratory, Los Alamos, NM 87545, USA
⁎ Corresponding author.
E-mail addresses: zjigmr@mail.hz.zj.cn (C. Li), Zhiming

0375-6742/$ – see front matter © 2013 Elsevier B.V. All ri
http://dx.doi.org/10.1016/j.gexplo.2013.08.008
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 29 January 2013
Accepted 5 August 2013
Available online 14 August 2013

Keywords:
Fractal distribution
Fractal averaging
Minor and trace elements
Censored data
Environmental geochemistry
The methods chosen to calculate the average value of the concentration for any geochemical element should
depend on the probability distribution of the element abundance data. In this study, a fractal-based method
was introduced to estimate the mean concentrations of geochemical elements that follow fractal frequency dis-
tributions. The fractal-based method has been tested on two abundance datasets for Ag, As, Au, Cu, Pb, Zn, Ce, Cr,
and U from 529 floodplain sediment samples in China and from 10,927 stream sediment samples in Zhejiang
Province, China. We compared the fractal method with other methods, including the arithmetic averaging, geo-
metric averaging, and median, and found that there exist large discrepancies among these averages. The results
show that the average calculated using the fractal-based method is always smaller than the arithmetic average
and also generally smaller than the geometric mean and the median. The discrepancies may be attributed to
the fact that the datasets follow a fractal distribution rather than a normal or a lognormal distribution. This
study indicates that calculated arithmetic mean, geometric mean, or median may overestimate the average
concentrations for elements that follow a fractal distribution.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Estimating abundances of geochemical elements in the Earth's crust
is always a challenge for geochemists, and it has attracted the attention
of geochemists for at least 100 years. Element abundances are pivotal
background values for exploration of mineral resources and determina-
tion of environmental pollution levels. In all existingmodels for estimat-
ing chemical composition of the crust (e.g., Clarke, 1889; Clarke and
Washington, 1924; Gao et al., 1998; Goldschmidt, 1933; Taylor, 1964;
Taylor and McLennan, 1985; Wedepohl, 1995), element abundances
were derived from the averages of the compositions of surface expo-
sures. The key difficulties in deriving element abundances include:
(1) the tremendous geochemical heterogeneity of the crust, which
calls for a need to devise a method for the generalization of particular
data (Yaroshevskii, 2007); and (2) the reliability of the estimated
mean concentration. Sediments from floodplains (Darnley et al., 1995;
Xie and Cheng, 1997) and from continental river discharges
(Yaroshevskii, 2007) have been considered as an “average sample” for
materials of the crust exposed on erosion surfaces of continents, to
overcome the first difficulty. However, the second problem still exists
so far. Based on the assumption that concentrations in Earth's rocks
and sediments follow normal distributions, average concentrations
of geochemical elements were calculated by arithmetic averages
@lanl.gov (Z. Lu).
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(Rock, 1988). It has been found (Ahrens, 1954a,b) that many elements,
especially trace elements, do not follow a normal distribution, but in-
stead show a skewed or a tailed distribution. Calculating the arithmetic
mean for skewed data will result in a biased (over) estimate of the cen-
tral value (Filzmoser et al., 2009a). In this case, data are usually
transformed by taking their logarithms, and then the normal model is
used to calculate the geometric mean for the dataset. However, in
many cases, a geometric mean is not appropriate because logarithms
of data may still exhibit a heavy skewed or a tailed distribution
(Chapman, 1976; Iqbal and John, 2010). Filzmoser et al. (2009a),
based on the concept of compositional data analysis, suggested that
when using an ilr-transformation for original data, it is possible to trans-
form the computed arithmetic mean of ilr-transformed data back to the
original data scale. However, as shown in Fig. 3 of Filzmoser et al.
(2009a), the distribution of Na2O is left-skewed; and it remains heavily
left-skewed after ilr-transformation.

The heavy skewed or tailed distribution mentioned above, together
with similar empirical discovery in many other application fields, has
resulted in the formulation of the fractal theory (Mandelbrot, 1983).
Original measured data from geochemical surveys can be regarded as
a height field defined over a certain domain. The pattern of a height
field is termed as geochemical landscape (geochemical surface). For
many minor or trace elements, the geochemical landscapes, like the
length of the famous Mandelbrot's coastline that commonly vary with
the scale of observation (sampling density), are undetermined (Li
et al., 2002, 2004), that is, in a given area, the denser one takes
samples, the more details one can obtain. This implies that minor or
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trace element abundance data probably follow fractal (power-law) dis-
tributions. In fact, many studies have provided strong support for the
hypothesis that the distribution of minor or trace element abundance
data is fractal (e.g., Allègre and Lewin, 1995; Bölviken et al., 1992;
Cheng et al., 1994; Li et al., 2002, 2003, 2004; Lima et al., 2003).

If the abundance of a geochemical element follows a fractal distribu-
tion, the average value should be estimatedwith a fractal-basedmethod
rather than conventional methods such as arithmetic averaging or geo-
metric averaging.

In this study, fractal averaging, a method based on fractal frequency
distributions, is introduced to calculate the average concentration of
geochemical elements. Hereinafter, the mean derived from the fractal
averaging is called “fractal mean”. This fractal-based method has been
tested on two abundance datasets for Ag, As, Au, Cu, Pb, Zn, Ce, Cr, and
U from 529 floodplain sediment samples that cover nearly most of
the land surface of China and from10,927 stream sediment samples col-
lected in Zhejiang Province, China. We compared the fractal method
with other methods, including the arithmetic averaging, geometric
averaging, and median, and found that there exist large discrepancies
among these averages.

2. Methodology

In general, a fractal (power-law) distribution is of the form

p xð Þ ¼ Cx−α
; ð1Þ

where p(x) is the number of objects with size x, and C and α are con-
stants, which can be determined from a dataset. The scaling exponent
α could be a fraction and is usually called the fractal dimension. The
density function diverges as x approaches zero, so there must be some
low bound (denoted as xmin) for this distribution. The normalization
 sample site

500 miles 

Fig. 1. Sampling locations of floodplain sediments f
constant C can be found from the constraint ∫∞
xmin

p xð Þdx ¼ 1, i.e., C =
(α − 1)xmin

α − 1, and the density function becomes

p xð Þ ¼ α−1
xmin

x=xminð Þ−α ð2Þ

Inmany practical applications, one of themethods to study data is to
calculate the cumulative distribution function (Newman, 2005). The
probability P(x) that the size X has a value greater than x is

P xð Þ ¼ P XNxð Þ ¼ ∫∞
x
p x′ð Þdx′: ð3Þ

If the distribution is fractal, substituting (2) into (3) and integrating
it yields

P xð Þ ¼ x=xminð Þ− α−1ð Þ
: ð4Þ

Thus the cumulative distribution function P(x) also follows a fractal
distribution, but with a flatter slope (scaling exponent), which is 1 less
than the exponent obtained from Eq. (1). The cumulative distribution
has an advantage in that it can reduce statistical fluctuations without
losing any information (Newman, 2005).

By definition, the ensemble mean for the fractal distribution can be
derived as

xh i ¼ ∫∞
xmin

xp xð Þdx ¼α−1
2−α

xmin
x

xmin

� �−αþ2jþ∞

xmin

: ð5Þ

It can be seen from Eq. (5) that the mean of the fractal distribution
depends on the scaling exponent α, which leads to several scenarios. If
South China Sea Is.

or a wide-spaced geochemical survey in China.
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α ≤ 2, the fractal distribution does not have a finitemean. Forα N 2, the
mean 〈x〉 given by Eq. (5) becomes

xh i ¼ α−1
α−2

xmin: ð6Þ

In this case, the mean square is given by

x2
D E

¼ ∫∞
xmin

x2p xð Þdx ¼α−1
3−α

x2min
x

xmin

� �
−αþ3jþ∞

xmin

: ð7Þ

This diverges if α ≤ 3, which means that the fractal distribution has
no finitemean square, and thus also no finite variance or standard devi-
ation for α ≤ 3. If α N 3, then the mean square value can be given by

x2
D E

¼ α−1
α−3

x2min: ð8Þ

In this case, the variance can be derived from themean squareminus
the square of the mean:

σ2 ¼ x2
D E

− xh i2 ¼ α−1
α−3ð Þ α−2ð Þ2 x

2
min: ð9Þ
Fig. 2. Locations of stream sediment sampling stations in Zhejiang Province, China. The rectangu
Zhejiang in China.
In many applications, the maximum of the distribution may be
approximated using the largest sampled value (denoted as xmax), and
the mean and the mean square may be estimated as

xh i ¼ α−1
α−2

1− xmax

xmin

� �2−α� �
xmin ð10Þ

and

x2
D E

¼ α−1
α−3

1− xmax

xmin

� �3−α� �
x2min ð11Þ

and the variance can be calculated from σ2 = 〈x2〉 − 〈x〉2. It should be
pointed out that both Eqs. (10) and (11) are valid for α N 1.

3. Illustrative examples

In the International Geochemical Mapping Project (IGCP259), it was
proposed to collect 5000 samples from each of all 160 × 160-km cells
(25,600 km2 in area) that cover the entire land surface of the world so
as to make global geochemical maps and thus to obtain a better under-
standing of the elements' distributions over the continents (Darnley
et al., 1995; Xie, 1996).
lar area in thefigure shows the range of Zhuji City (see the text). Inset shows the location of



Table 1
Comparison of the arithmetic mean, geometric mean, median, and fractal mean for some minor and trace elements in 529 samples from floodplain sediments, China.

Element Detection
method

Detection
limit

Minimum
reporting
value

Maximum
reporting
value

Median MAD Arithmetic
mean

Geometric
mean

Fractal
mean

Arithmetic
variance

Fractal
variance

α (= β + 1) Xmin Xmax

Ag AAS 0.02 (ppm) 0.03 0.61 0.08 0.02 0.11 0.09 0.09 0.01 0.01 2.93 0.05 0.61
As AFS 0.5 (ppm) 1.60 144 7.50 2.10 10.01 7.75 8.24 141.53 40.49 2.73 4.10 54
Au AAS 0.2 (ppb) 0.20 52.50 1.50 0.60 2.06 1.56 1.58 8.53 0.95 2.90 0.88 7.20
Ce XRF 3 (ppm) 10.0 214 70.00 14.00 74.13 69.42 64.85 747.63 399.53 4.93 49 214
Cr XRF 7 (ppm) 15.00 334 70.00 12.00 73.48 68.61 68.94 1019.17 727.74 4.37 49 334
Cu XRF 2 (ppm) 4.80 110.50 23.30 5.40 25.72 23.59 16.58 152.70 66.11 3.90 11 110.50
Pb XRF 5 (ppm) 7.00 347 26.00 6.00 31.32 27.74 25.53 491.86 330.26 3.38 15 347
U COL 1 (ppm) 1.30 12.50 1.90 0.30 2.19 2.06 1.97 1.10 0.94 3.86 1.3 12.50
Zn XRF 10 (ppm) 3.00 618 75.00 18.00 80.40 71.54 48.43 2288.79 365.13 4.20 34 198

AAS: atomic absorption spectrometry; AFS: atomic fluorescence spectrometry; COL: colorimetry; XRF: X-ray fluorescence spectrometry.
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In support of this effort, a project designed to test the feasibility of
the wide-spaced global geochemical sampling and mapping, “Environ-
mental Geochemistry Monitoring Networks and Dynamic Geochemical
Maps in China”, was launched in 1992. In 1993–1994, 529 sampling sta-
tions were established to carry out a wide-spaced floodplain sediment
sampling, with an average density of one sample per 15,000 km2,
which irregularly covers most of the land surface of China (Fig. 1)
(Cheng et al., 1997; Xie and Cheng, 1997). Two samples were collected
at each sampling station: (a) surface floodplain sediment at a depth of
5–25 cm, and (b) deep floodplain sediment at a depth of 80−120 cm.
The concentrations of 50 elements were measured for each sample.
The detailed description of the sample medium and analytical methods
of the floodplain sediment survey have been given in Cheng et al.
(1997). On the other hand, as a sub-project of China's national geochem-
ical mapping project (Regional Geochemistry–National Reconnais-
sance), 10,927 samples were collected from active stream sediments
in Zhejiang Province (Fig. 2, about 101,800 km2 in area) of China by
the Zhejiang Geophysical and Geochemical Exploration Institute during
1980–1986. The sampling stations were set at the mouth of first-order
streamsor in the connected second-order streams. At each sampling sta-
tion, sediment was gathered at four points with an average sampling
density of 1 point per square kilometer. Samples from each station
were composed of an equal weight of sediment from these four
sampling points. The minimum weight of each sample is 2.5 kg. The
composite samples from these stations, with an average density of
one sample per 4 km2, were submitted to the laboratory for chemical
analysis. The concentrations of 39 elements were measured for the
10,927 stream sediment samples.

In this study, as an illustration of the fractal approach to calculate the
average concentration of elements, we selected Ag, As, Au, Cu, Pb, Zn, Ce,
Cr, and U content data from the floodplain sediments (529 samples at a
depth of 5–25 cm) and from the stream sediments (10,927 samples). As
a comparison, a subset of data consisting of 2026 samples in a small area
about 7000 km2 (i.e., Zhuji City of Zhejiang Province, see the rectangular
Table 2
Comparison of the arithmetic mean, geometric mean,median, and fractal mean for someminor

Element Detection
Method

Detection
limit

Minimum
reporting
value

Maximum
reporting
value

Median MAD Arithme
mean

Ag AAS 0.02 (ppm) 0.01 5 0.09 0.03 0.12
As AFS 1 (ppm) 0.69 127 6.40 2.15 8.37
Au AAS 0.3 (ppb) 0.01 2640 0.96 0.42 2.28
Ce XRF 3 (ppm) 6.00 410 93.50 16.80 100.74
Cr XRF 7 (ppm) 0.20 402 21.60 10.80 31.73
Cu XRF 1 (ppm) 0.10 3534.50 10.80 4.10 15.75
Pb XRF 2 (ppm) 0.37 7640 32.40 7.50 40.14
U COL 1 (ppm) 0.70 32.50 3.50 0.70 3.67
Zn XRF 4 (ppm) 13.80 5453.20 76.00 17.20 90.65

AAS: atomic absorption spectrometry; AFS: atomic fluorescence spectrometry; COL: colorimet
area in Fig. 2) was randomly selected from the original stream sediment
data. The selected nine elements can be divided into two groups (minor
or trace elements) with different geochemical properties, i.e., thiophile
elements (Ag, As, Au, Cu, Pb, and Zn) and oxyphile elements (Ce, Cr,
and U). The analytical methods, detection limits of element determina-
tions, andminimum andmaximum reporting values, aswell as the total
number of samples measured are listed in Tables 1, 2 and 3.

4. Result and discussion

To estimate the average concentration of the minor and trace ele-
ments using the fractal-based method, we first examined the concen-
tration–frequency relationship of the element data from the 529
floodplain sediment samples. Fig. 3 plots the cumulative number of
samples exceeding a certain element concentration against the element
concentration for elements Ag, As, Au, Cu, Pb, Zn, Ce, Cr, and U on a log–
log scale. From thisfigurewe can see that the assay data of As, Ce, Cr, Cu,
Pb and Zn exhibit approximately straight lines over ranges of high con-
centrations and a flattening of the curves in the low concentration
ranges from near zero concentrations to detection limits (see blue
vertical lines in Fig. 3). The assay data of Ag and Au show a significant
curvature in the low concentration ranges, almost a straight line rela-
tionship for intermediate concentrations, and a clear deviation from
the straight line relationship in the high concentration ranges (at the
right-hand side of the distributions). The cumulative graph of U,
which is different from the other elements, shows that the assay data
form an approximately straight line for the entire concentration range
(see Fig. 3).

A dataset can be considered as samples from a particular population.
If the scale range of samples is narrower than that of the population as a
whole then the samples are truncated or censored, therefore biased
(Pickering et al., 1995). Many studies (e.g., Barton and Zoback, 1992;
Pickering et al., 1995) suggest that most of the samples from geological
power law distributions are truncated or censored due to the resolution
and trace elements in 10,927 samples from stream sediments in Zhejiang Province, China.

tic Geometric
mean

Fractal
mean

Arithmetic
variance

Fractal
variance

α (= β + 1) Xmin Xmax

0.09 0.09 0.03 0.01 2.85 0.04 5
6.71 4.81 64.27 26.14 2.95 2.40 127
1.00 0.91 1032.83 5.08 2.44 0.30 104.33

95.06 66.65 1365.72 366.13 5.54 52 410
23.27 10.96 797.89 23.12 4.47 7.8 402
11.34 8.25 2410.77 70.88 2.93 4.1 173.40
33.54 32.10 8184.12 1570.01 3.13 17 8183.39
3.47 2.79 2.18 1.29 4.57 2.01 32.50

79.97 78.33 9297.41 2169.88 3.62 49 769

ry; XRF: X-ray fluorescence spectrometry.



Table 3
Comparison of the arithmetic mean, geometric mean, median, and fractal mean for some minor and trace elements in 2026 samples from stream sediments in Zhuji City of Zhejiang
Province, China.

Element Detection
method

Detection
limit

Minimum
reporting value

Maximum
reporting value

Median MAD Arithmetic
mean

Geometric
mean

Fractal
mean

Arithmetic
variance

Fractal
variance

α (=
β + 1)

Xmin Xmax

Ag AAS 0.02 (ppm) 0.01 3.20 0.08 0.02 0.10 0.08 0.08 0.01 0.01 3.02 0.04 3.20
As AFS 1(ppm) 1.00 530 8.40 2.60 10.55 8.51 4.00 201.17 7.06 3.03 4.30 8.00
Au AAS 0.3 (ppb) 0.10 602.90 0.98 0.40 2.31 1.09 1.08 287.43 1.68 2.46 0.42 15.28
Ce XRF 3 (ppm) 7.75 371.40 85.62 9.93 90.02 87.42 74.09 612.32 311.16 6.25 60 371.40
Cr XRF 7 (ppm) 0.20 341.10 25.10 10.50 35.75 26.39 20.81 1256.17 449.47 2.83 10 341.10
Cu XRF 1 (ppm) 0.20 1210.60 16.80 6.30 24.17 17.21 15.52 1392.80 126.84 2.85 8.10 98.40
Pb XRF 2 (ppm) 0.37 9526 29.09 6.41 36.59 28.22 19.16 43998.80 70.48 3.97 13 89.11
U COL 1 (ppm) 0.72 26.45 3.06 0.58 3.20 3 2.78 1.86 1.21 4.61 2.01 26.45
Zn XRF 4 (ppm) 33.12 1302.70 79.43 17.63 92.44 83.14 70.45 5396.08 614.57 4.86 51 198.40

AAS: atomic absorption spectrometry; AFS: atomic fluorescence spectrometry; COL: colorimetry; XRF: X-ray fluorescence spectrometry.
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Au concentration (ppb)

Y = pow(X,-1.90) * 629.93
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Ce concentration (ppm)

Y = pow(X,-3.93) * 4.39E9

Slope=3.93

DL

Cr concentration (ppm)

Y = pow(X,-3.37) * 3.24E8

Slope=3.37

DL

Cu concentration (ppm)

Y = pow(X,-2.90) * 2.04E6

Slope=2.90

DL

Pb concentration (ppm)

Y = pow(X,-2.38) * 5.51E5

Slope=2.38

DL

U concentration (ppm)

Y = pow(X,-2.87) * 1.63E3

Slope=2.86

DL

Zn concentration (ppm)

Y = pow(X,-3.21) * 2.26E8

Slope=3.20

DL

Fig. 3. Frequency distributions of Ag, As, Au, Ce, Cr, Cu, Pb, U, and Zn displayed in diagrams showing the logarithm of the cumulative number of samples exceeding a certain element
concentration plotted against the logarithm of the element concentration. 529 samples from a floodplain sediment survey in China. DL (blue vertical lines) stands for the detection
limit. The red line shows the 95% confidence limits [the standard deviations are ± 2σ based on Eq. (13)]. The slope of best-fit line (black line) is calculated using the least square fitting
method.
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limit of measurement techniques employed and the data recorded over
a limited time (e.g., earthquake observation) or space (e.g., geological
survey). Therefore, in Fig. 3, the left-hand fall-off and right-hand devia-
tion observed in the log–log plots for concentration diagrams of Ag, As,
Au, Cu, Pb, Zn, Ce, and Crmay be attributed to the following two effects.

First, the fall-off in the low concentration ranges may be related to
the resolution of analytical methods. For example, many datasets in mi-
croanalysis or trace analysis, such as environmental testing, frequently
contain values below the detection limit or limit of quantification of
the analytical techniques due to the inherent limitations of chemical/
analytical measurement methods (Zhao and Frey, 2004). These values
are usually called left-censored data in environmental geochemistry
(Antweiler and Taylor, 2008). The existing methods for treating left-
censored data mainly include two alternatives: either substituting a
constant for all observations below the detection limit or using random
or evenly spaced numbers from a uniform distribution between zero
and detection limit for the censored observations (Antweiler and
Taylor, 2008; Clarke, 1998). Both of these alternatives result in a left-
hand truncation in the low concentration range (Fig. 4).

Secondly, a finite-range effect (Pickering et al., 1995)may explain the
deviation in the right-hand side of the log–log plots in Fig. 4. The finite-
range effect can pose a right-censoring at high element concentrations
(Fig. 4). During geochemical exploration, a survey area is usually divided
into many individual cells, and one or several samples are collected in
each cell, which implies that the geochemical data collected over a limit-
ed spacewill oftenmiss rarely high values as indicators of rare geochem-
ical processes, such asmineralization, consequently, resulting in a fall-off
at the right-hand side of the plots (e.g., Ag and Au in Fig. 3).

Moreover, there are two types of measurement errors in measuring
element concentration using an analytical method. Over a range of near
zero concentrations, themeasurement error is seen to be approximately
constant; and over ranges of high concentrations, the measurement
error is observed to be proportional to the concentration of an analyte
(Currie, 1968; Hubaux and Vos, 1970). There are some difficulties in es-
timating the overall precision of an analytical method for data that span
the “gray area”where a transition occurs between near zero concentra-
tions and quantifiable amounts due to the existence of two types of
measurement errors (Wilson et al., 2004). The fall-off at the left-hand
side of the log–log plots in Fig. 4 can be considered to correspond with
the gray area.
0 0.2 0.4 0.6 0.8
Ag (ppm)

0

10

20

30

40

Fr
eq

ue
nc

y

Truncation

Censoring

Fig. 4.Histogram displaying the frequency distribution of Ag assay data in floodplain sed-
iment samples collected in China.
Any data within either the fall-off or censored data are not represen-
tative of the true distribution, and thus corrections are necessary (Barton
and Zoback, 1992; Pickering et al., 1995). Pickering et al.(1995) devel-
oped an iterative approach to correct a cumulative graph with the left-
hand fall-off and right-hand deviation in a log–log scale. The approach
can be expressed as

logNC ¼ LogNT−βT log XMAX− log XMINð Þ ð12Þ

where XMIN and XMAX are respectively the minimum and maximum
values in a self-similar sub-sample data from a power-law population,
NC is the cumulative number of samples assigned to XMAX, NT is the cu-
mulative number of samples assigned to XMIN, and βT is the slope of
the straight line fitted to Eq. (4) for the sub-sample data taken from
XMIN to XMAX.

For a cumulative graph fitted using a least squares fitting method,
the standard deviation for the graph corrected by applying the iterative
approach is given as (Pickering et al., 1995)

β≥1;σ ¼ kβffiffiffiffi
N

p ð13Þ

and

βb1;σ ¼ k

ffiffiffiffi
β
N

r
ð14Þ

whereσ is the standard deviation, k is a coefficient related to the sample
size (magnitude) N, and β = α − 1 is the slope of the straight line
fitted to Eq. (4) using the least squares method. Based on Eq. (13) or
(14), the 68% or 95% confidence limits for the estimated β values corre-
spond to the mean plus/minus one or two standard deviations,
respectively.

As shown in Fig. 3, the cumulative graphs of all elements except for U
are required to be corrected. The corrected cumulative graphs (black
line) are also shown in Fig. 3. All standard deviations in the β values
for the corrected cumulative graphs are ± 2σ (see red line in Fig. 3)
based on Eq.(13), the 95th percentile confidence limits, which means
that 95% of the total samples for every element lie in the confidence
intervals.

Similarly, Fig. 5 shows the cumulative graphs for the elements Ag, As,
Au, Cu, Pb, Zn, Ce, Cr, and U from the stream sediment samples collected
in the Zhejiang region. Fig. 6 depicts the cumulative graphs for the same
elements from the stream sediment samples in Zhuji City of Zhejiang
Province. The cumulative graphs of Au, Cu, Pb, and Zn in Fig. 5, as well
as Au, Pb, Zn (and possibly Ag) in Fig. 6, which are different from the
other elements, show an upward deviation from the straight-line rela-
tionships at high element concentrations (near the right-hand side of
plots). The data within this upward deviation may be related to locally
high geochemical anomaly distributions, as indicated from field geolog-
ical observations that some stream sediment samples were collected
fromareas near gold, silver, lead, zinc, or copper deposits in the Zhejiang
region.

Following the same methodology used for Fig. 3, the cumulative
graphs in Figs. 5 and 6 have been corrected (black line) and all standard
deviations in the β values for the corrected cumulative graphs are ± 2σ
(red line) based on Eq.(13), the 95th percentile confidence limits.

The scaling exponent β for a cumulative fractal (power-law) distri-
bution, as shown in Section 2, is related to the scaling exponent α for
the corresponding probability density functions (non-cumulative distri-
bution): α = β + 1. As illustrated in Figs. 3, 5, 6 and Tables 1, 2 and 3,
the corrected cumulative graphs for every element concentration
dataset can satisfy the conditions required by Eqs. (6), (7) and (8), i.e.,
α N 2 and α ≠ 3.

Next, we calculate the fractal mean and variance of concentrations
for the element data. In calculating the fractal mean, we take the mini-
mum concentration level of the corrected cumulative graph (XMIN) as
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Fig. 5. Frequency distributions of Ag, As, Au, Ce, Cr, Cu, Pb, U, and Zn showing the logarithmof the cumulative number of samples exceeding a certain element concentration plotted against
the logarithm of the element concentration. 10,927 samples from a stream sediment survey in Zhejiang Province. DL (blue vertical lines) stands for the detection limit. The red line shows
the 95% confidence limits [the standard deviations are ± 2σ based on Eq. (13)]. The slope of best-fit line (black line) is calculated using the least squares fitting method.
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xmin in Eq. (10). The variance is obtained from the mean square minus
the square of the mean. For the calculation of the mean squares, the
minimum andmaximum concentration levels of the corrected cumula-
tive graph (XMIN and XMAX) are taken as xmin and xmax in Eq. (11), re-
spectively. The mean values and variances calculated using the fractal-
based method as well as median and median absolute deviation
(MAD) for Ag, As, Au, Cu, Pb, Zn, Ce, Cr, and U concentrations in the
floodplain sediment samples and stream sediment samples are shown
in Tables 1, 2 and 3.

Comparing the fractal mean with the commonly used arithmetic
mean or geometric mean for the element concentration data (Fig. 7
and Tables 1, 2 and 3), as expected, large discrepancies exist among
the three averages. For example, all fractal means are lower than the
arithmetic means. The differences between the fractal means and the
arithmetic means are between 6.6% (for Cr data in China) and 189.5%
(for Cr data in Zhejiang). In particular, for As in Zhuji City and Cr in
the Zhejiang region, the fractal means are respectively 1.6 and 1.9
times lower than their corresponding arithmetic means. The fractal
means, except for the means of As, Au and Cr data in China, are also
lower than their corresponding geometric means.

All medians are lower than the arithmetic means, but they can be ei-
ther higher or slightly lower than the fractal means (see Fig. 7 and
Tables 1, 2 and 3), which indicates that medians and fractal means are
not compatible. Such incompatibility may stem from the difference on
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Fig. 6. Frequency distributions of Ag, As, Au, Ce, Cr, Cu, Pb, U, and Zn showing the logarithmof the cumulative number of samples exceeding a certain element concentration plotted against
the logarithmof the element concentration. 2026 samples from a stream sediment survey in Zhuji city. DL (blue vertical) shows the detection limit. The red line shows the 95% confidence
limits [the standard deviations are ± 2σ based on Eq. (13)]. The slope of best-fit line (black line) is calculated using the least squares fitting method.
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the actual subset of data used in calculatingmedians and fractal means.
The fractal means are derived from the corrected data (by ignoring the
fall-off or censored data), while the medians are determined from
the original samples. It is noted that the medians are sensitive to the
number of data points in the sample, although they are insensitive to
the actual values of outliers. This also explains the incompatibility be-
tween the median absolute deviation (MAD) and the fractal variances.

The different averages are obtained from the same data set using dif-
ferent methods. The question is “which of these averages is the most
credible?” This question cannot be answered at this point, because the
true mean value of any element concentration is unknown. However,
we should emphasize that the choice of methods used for calculating
the average value of concentration for geochemical elements depends
on the distribution pattern of datasets. If the distributions of element
concentration (especially minor or trace elements) in Earth's rocks
and sediments tend to a fractal pattern, their mean values should be es-
timated with the method based on the fractal concept. The variance, or
its square root, characterizes the concentrated extent of the data around
the central value (mean value). As those shown in Tables 1, 2 and 3, all
fractal variances are smaller than the arithmetic variances, which indi-
cates that the fractalmeanmay bemore appropriate than the arithmetic
mean for the data.

It should be pointed out that geochemical data are compositional
data (Aitchison, 1986; Filzmoser et al., 2009a,b; Reimann et al., 2012).
There is a constraint on compositional data, i.e., the sum of all compo-
nents being one (or 100%), which means that compositional data are



Fig. 7. Comparison of fourmethods for calculatingmean of someminor and trace element
data in surficial sediments: (a) China; (b) Zhejiang Province; and (c) Zhuji City.

215T. Ma et al. / Journal of Geochemical Exploration 139 (2014) 207–216
closed. It has been suggested in the literature that some types of data
transformation may be needed prior to any analysis (Aitchison, 1986;
Filzmoser et al., 2009a,b). Several transformations have been proposed,
including the additive logratio (alr), centered logratio (clr), and isomet-
ric logratio (ilr). For the purpose of comparison of the fractal mean and
fractal variance derived from the data without transformation, we first
made the centered logratio transformation, which can be expressed as
(Aitchison, 1986; Aitchison and Egozcue, 2005)

clr xð Þ ¼ ln x1=g xð Þð Þ; ln x2=g xð Þð Þ;…; ln xD=g xð Þð Þ½ � ð15Þ

where g(x) is the geometric mean of the components of x defined by
Aitchison (1986). After using the clr-transformation for the original
data of Ag, As, Au, Cu, Pb, Zn, Ce, Cr, and U from the 529 floodplain
sediment samples, we then plotted the cumulative number of samples
exceeding a certain ratio (xi/g(x)) plotted against the (xi/g(x)) on a
log–log paper. It is found that the shape of the log–log plots (not
shown) is basically the same with that of Fig. 3, which indicates that if
geochemical element abundance data follow a fractal distribution, the
logratio-transformed data still remain the fractal distribution.
We noted that, in a number-average size model which shows a
power-law (fractal) relationship with the average size, the average
size is defined as the mean of the sizes of the objects beyond a given
size (Wang et al., 2011). However, as shown in Eq. 9 of Wang et al.
(2011), themean is an arithmetic average calculated using amoving av-
erage method, which is not based on the fractal concept.

Finally, it is interesting to point out that the left-censored data in en-
vironmental measurements were commonly evaluated by assuming
that data follow a normal or lognormal distribution (Antweiler and
Taylor, 2008). However, if concentration data of trace elements in envi-
ronmental testing follow a fractal (power-law) distribution, the fractal
approach may be more meaningful than the traditional methods for
evaluating the left-censored data and simulating the “true values” hid-
den in the censored data.

5. Conclusions

Becauseminor or trace element abundance data in Earth's rocks and
sediments often tend to follow a fractal frequency distribution, their
mean values should be determined with the fractal-based method. In
this study, we use a fractal method to estimate the average values of
concentration for geochemical elements. The key points in this method
are first to plot the cumulative number of samples exceeding a certain
element concentration plotted against the element concentration on a
log–log paper. If the cumulative number of samples as function the ele-
ment concentration falls quite closely on a straight linewith slope β N 1
and β ≠ 2, then one should apply the derived fractal frequency relation
to calculate the mean value of the element abundance data. However,
cumulative graphs for most datasets from geochemical surveys are
biased (truncated or censored) due to the resolution limit of chemical/
analytical measurement methods and over a limited space. Thus the
cumulative graphs need to be corrected, and the fractal means can be
calculated using these corrected graphs.

We illustrated the method using two abundance datasets for ele-
ments Ag, As, Au, Cu, Pb, Zn, Ce, Cr, andU,which have different geochem-
ical properties, from 529 floodplain sediment samples and from 10,927
stream sediment samples. These examples demonstrate that the differ-
ences among the fractal means, arithmetic means, geometric means,
and medians for the same datasets are very large. All the fractal means
are lower than the arithmetic means and also generally lower than the
geometric means and the medians. This is because the data appear
more likely a fractal rather than a normal or a lognormal distribution.

The evaluations of assay data falling between near zero concentra-
tions and quantifiable amounts, especially the left-censored data, are
still critical issues in environmental measurements. This study showed
that, in many cases, fractal (power-law) statistics may be of consider-
able value for evaluating the left-censored data.
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